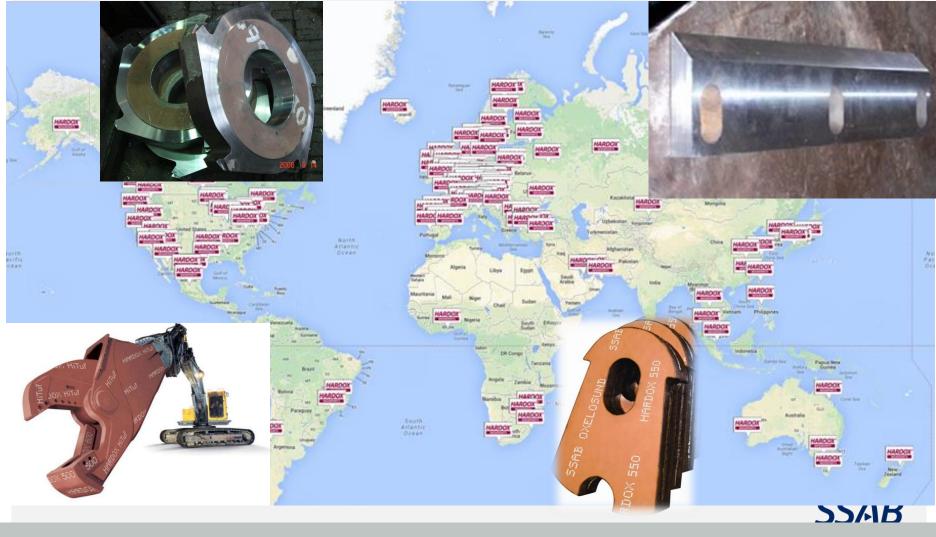

SSAB

Why Hardox?

Juha Erkkilä

Aitik Mine – Sweden (-40°C) 20 mm Hardox 450 Lifetime: ~22 000 hours

50 mm Hardox 450



Hardox Wearparts

SSAB

Hardox[®] Plate Product Program

		Impact toughness		Bending		CEV/CET ²	
Steel Grade	Hardness Nominal [HBW]	LCVN typical (20 mm)	TCVN minimum	properties Transverse t<8 mm R/t	Rel. Service Life Interval ¹	Typical (20 mm)	Thickness [mm]
Hardox - Workshop friendly abrasion resistant wear plates for all purposes, en				s, enabling lighter	, stronger and more d	urable applicatio	ns.
Hardox HiTuf	350	95 J –40° C ³	40 J –40° C			0.55/0.36 ³	40–1604
Hardox 400	400	100 J –40° C		2.5	1	0.42/0.29	3–130
Hardox 450	450	50 J –40° C	27 J –20° C ⁷	3.0	1.1–4.0	0.47/0.34	3–130 ⁸
Hardox 500	500	37 J –40°C	27 J 0° C ⁹	3.5	1.3–5.6	0.62/0.41	4– 103 ¹⁰
Hardox 550	550	30 J –40° C			1.5–8.1	0.72/0.48	8–51
Hardox 600	600	20 J –40°C			1.8–12.3	0.73/0.55	8–51
Hardox Extreme	60 HRC	<15 J –40° C			2.4–17.9	0.84/0.59	8–19

All plates are produced with AccuRollTech[™] precision guarantee or closer.

1. Max/min slideing wear by SSAB WearCalc (mild steel 0.2–0.8).

2. CEV=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15; CET=C+(Mn+Mo)/10+(Cr+Cu)/20+Ni/40 3. 70mm

4. Thicknesses up to 170mm are under development.

5. Supplied with a cold rolled surface. Maximum width 1500mm.

6. Punch radius for a 90° bend in any direction.

7. Guaranteed CVN properties for Hardox 450 Tuf for 3 – 130 mm thicknesses

8. Thicknesses up to 160mm are under development.

9. Guaranteed CVN properties for Hardox 500 Tuf for 4 – 65 mm thicknesses 10. Thicknesses up to 120mm are under development.

Hardox under development (AR)

Datasheet not available on ssab.com

Where special data sheet is available it can be found at Marketspace: http://steelnet.ssab.com/Library/EMEA/MarketingSales/info_och_support/Info/information_and_news/projects_and_subjects/thick_plate s/Pages/default.aspx

Grade	Thickness interval	Special data sheet
AR 350	160.1-170	Available
AR 400	130.1-160	Available
AR 450	130.1-160	Available
AR 500	103.1-120	Available
AR 550	51.1-80	Available
AR 600	51.1-65	Available
AR 650	19.1-30	Available

Wear Strip dimensions

From Borlänge	Thickness range mm
Hardox 400	3 – 8
Hardox 450	2.5 - 6**
Hardox 450 CR	0.7 – 2.1

From Raahe*	Thickness range mm
Raex 300	2 - 8
Raex 400	2 - 8
Raex 450	2.5 - 8
Raex 500	3 - 6.5

* Trial orders ongoing under Hardox name

** Trial orders up to 8 mm

New dimensional program overview

🔁 Dimensionprogram Hardox 450 Draft 0916.pdf - Adobe Reader

Arkiv Redigera Visa Fönster Hjälp

SSAB

- 0 X

×

Benefit of Hardox

A unique combination of hardness, toughness and good workshop properties

Bending

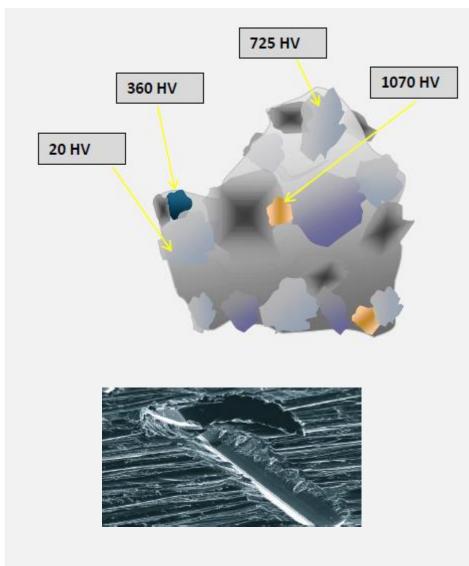
Drilling

Milling

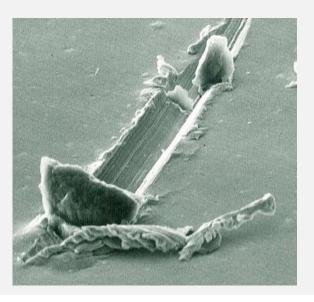
Welding

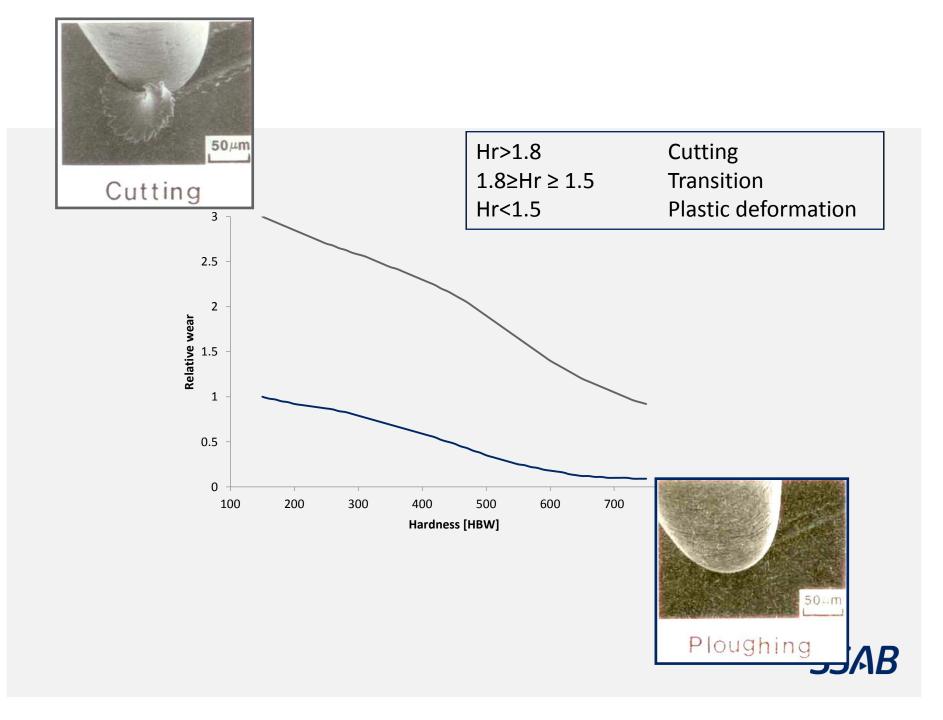
High Hardness and High Toughness with excellent workshop properties – Cost savings

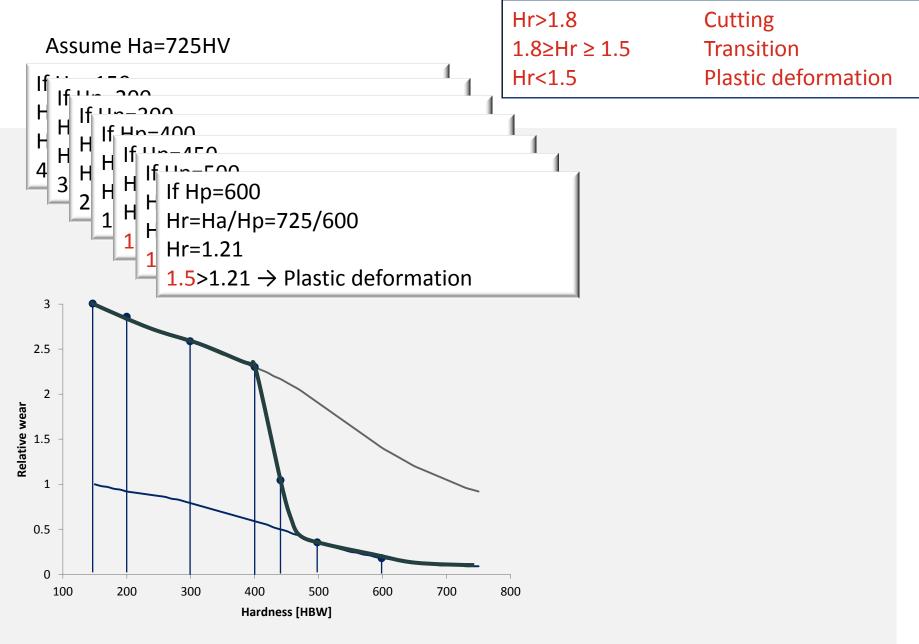
- Excellent toughness
 - Possible to use higher hardness!
- Higher hardness, longer service life
 - Life-cycle cost advantage!
 - Less down time!
- Excellent workshop properties due to clean steel
 - Lower manufacturing costs!



Increasing lifetime by managing wear

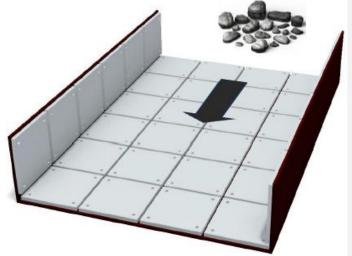



How to predict wear and increase service life



Relative hardness (H _r)					
$\frac{Rock\ hardness}{Plate\ hardness} = H_r$					
	Micro cutting Micro ploughing				

SSAB



How to select material – an example

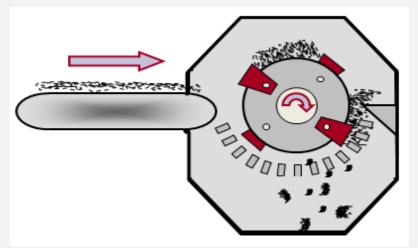
Quarry chute handling waste rock containing both hard and soft minerals - what material to use?

- $2500 \times 6000 \times 20$ [mm]

SS/	I B

How to select material – an example

	Mild Steel	Hardox 400	Hardox 500	Hardox 600
Plate price	2 200	4 500	5 000	6 500
Drilling costs	1 600	2 000	2 400	2 900
Cutting cost	250	270	300	350
Transport cost	300	300	300	300
Attaching plates	1 100	1 100	1 100	1 100
Over head	500	500	500	500
Total cost to produce one set	€ 5 950	€8670	€9300	€ 11 650


How to select material – an example

	Mild steel	Hardox 400	Hardox 500	Hardox 600
Manufacturing and attachment	5 950	8 670	9 300	11 650
Relative service life	1.0	2.1	4.5	6.3
Absolute service life (days)	100	210	450	630
Yearly maintenance cost (€)	21 710	15 070	7 540	6 750
Yearly Down time cost (€)*	28 970	23 800	8 730	3 910
Yearly total cost (€)	50 680	38 870	16 270	10 660

Metal scrap hammers

The sandwich hammer made by Hardox 500 tested in scrap processing

Previous life time for hammers measured in scrap volumes:

- S690Ql 1600 tons
- Hardox 400 2500 tons
- Original 12%Mn steel 7000 tons
- New "adwance" 12%Mn steel 9700 tons

SSAB

Hardox 500 (sandwich) – 14500 tons

Take the properties into use!

Screen of a shredder

Steelgrade: Hardox 500 Thickness range: 6-10 mm Industry segment: Recycling Description of the application The screens are used in the shredder processing plastic waste. They work as last "cutter" as well. To utillize the material they are roller bending the screen after ca 800 hour to the opposite radius. Previous material

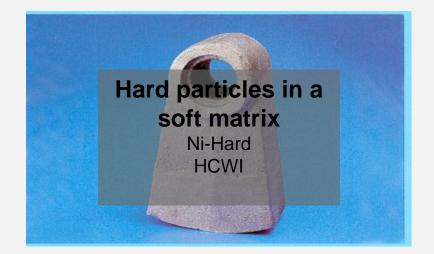
400 HBW steel Service life 1100 hours (800 + 300) Competitive advantage Service life Manufacturing steps Cutting method - Laser cutting; Bending method - Roll bending

Status: Success

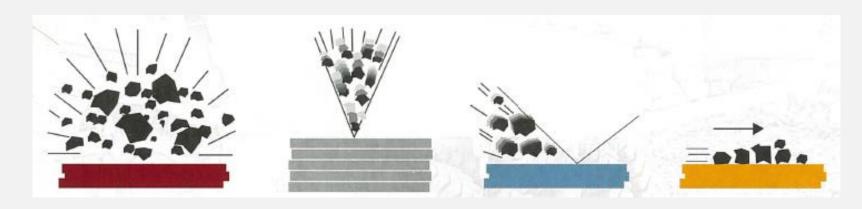
Reason for failure or success 500 HBW together with good toughness

...and save money!

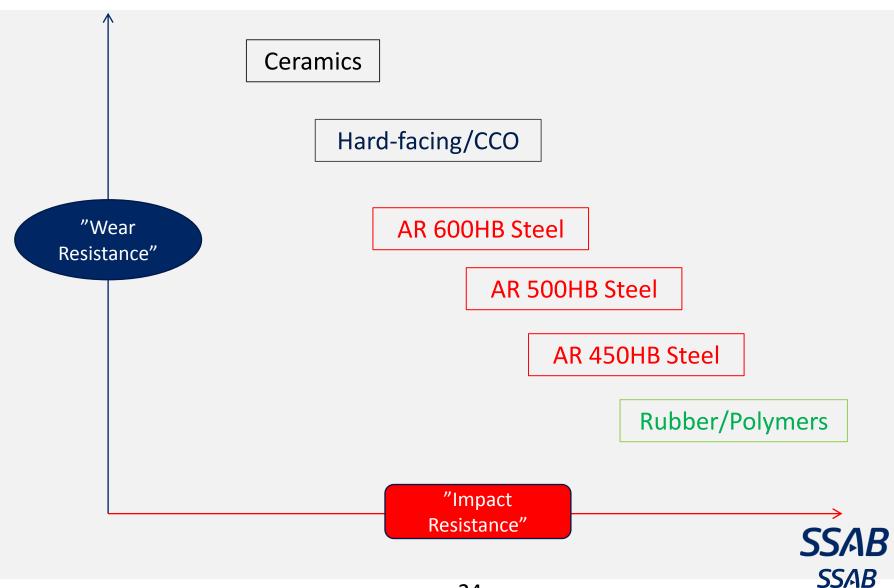
Shears cutting the scrap at the scrap yard prior to use in steel mill


- Currently using OEM spare parts made out 52 HRC tool steel
 - Worn out in 10 days
 - Cost of the blades really high \rightarrow 7000 USD/ton
 - Delivery time ~6 months

Different materials in recycling applications



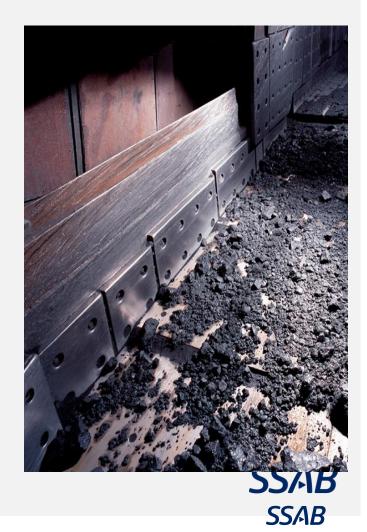
SSAB


Quenched and tempered steel plate

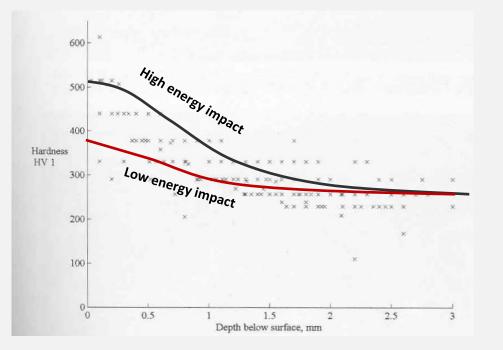
Soft wear materials

Hard particles in a soft matrix

Very hard materials



Wear resistant materials Hard materials – QT steels



- Good wear resistance
- Reliable performance
- Good impact toughness
- Easy to weld
- Easy to machine

Hard materials – Manganese steels

- Hardens during service (250HB \rightarrow ~500HB)
- Good in "active" components

SSAB

SSAB

Hard materials – Tool steels

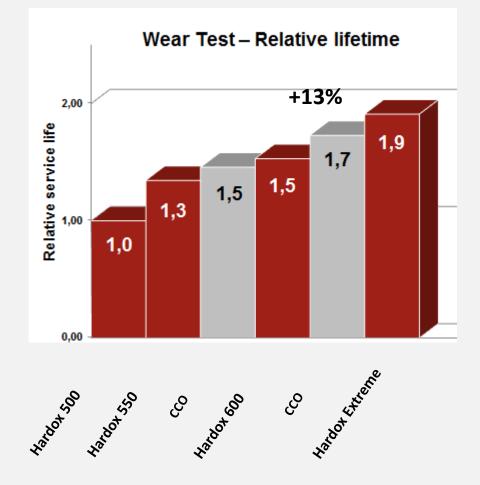
- Good wear resistance
- High C-content
 - Weldability and toughness impaired
- High alloying content
- High cost
- Can withstand elevated temperatures
- Requires heat treatment

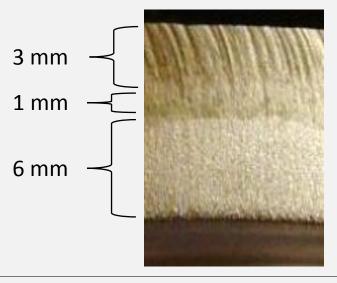
Hard particles in a soft matrix – CCO (hardfacing)

- High wear resistance
- Brittle

Hard chromium carbide layer

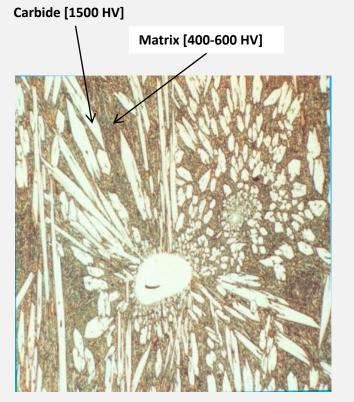
Soft mild steel layer



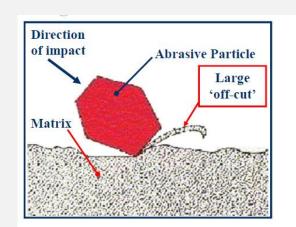

Hard particles in a soft matrix – CCO (hardfacing)

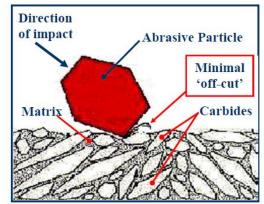
CCO

SSAB



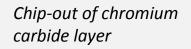
Service life of liner plate

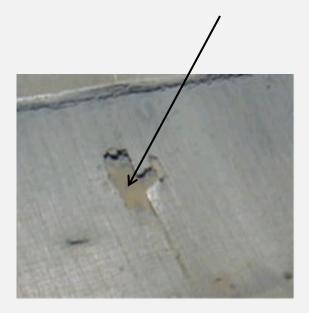

	SSAB
St.52 Mild steel (6mm)	- 8 days
CCO (4mm)	- 45 days
Hardox 600 (8mm)	- 80 days


Hard particles in a soft matrix

Hard particles in a soft matrix Ni-Hard HCWI

Microstructure of CCO


SSAB


SSAB

Hard particles in a soft matrix

Hard particles in a soft matrix Ni-Hard HCWI

SSAB

Wear resistant materials Ceramics

- Very good wear resistance
- Best for small particles
- Low friction
- Not suitable for welding or impact wear

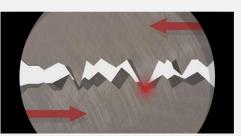
SSAB

Wear resistant materials Rubber

- Good against some impact wear
- Low friction
- Low weight
- Low performance against dry sliding wear
 - worn 3x faster than mild steel

Wear resistant materials Overview

Material	Sliding wear	lmpact wear	Toughness	Welding	Bending	Machining	Cutting
Qt-Steel	Very Good	Very Good	Very Good	Good	Good	Medium / Good	Good
Ceramics	Excellent	Poor	Poor				
Mn-Steel	Medium	Very Good	Excellent	Medium	Possible	Medium	Poor / Medium
HCWI	Excellent	Good/Medium	Poor	Casting - Poor Hardfacing – Good	Overlay-Medium	Not Possible	Poor/Medium
Ni-Hard	Very Good	Medium	Poor	Not Possible	Not Possible	Not Possible	Not Possible
Rubber	Poor	Good		Gluing			


High temperature wear

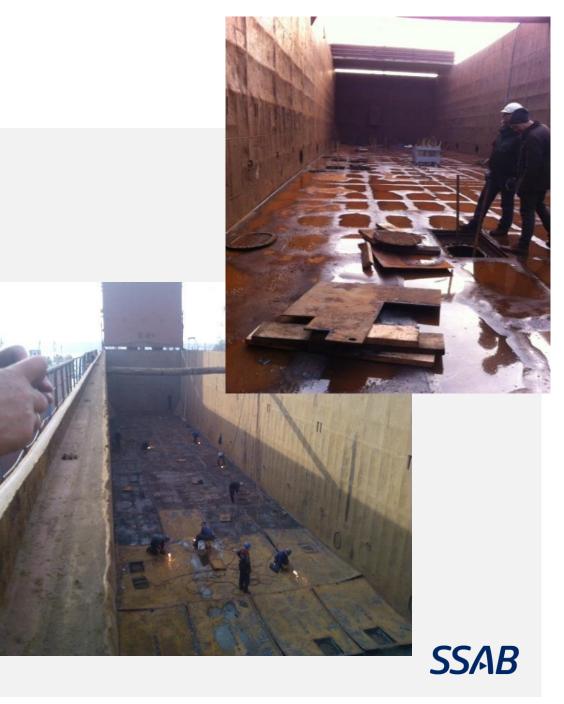
Elevated working temperature

□ Friction heat

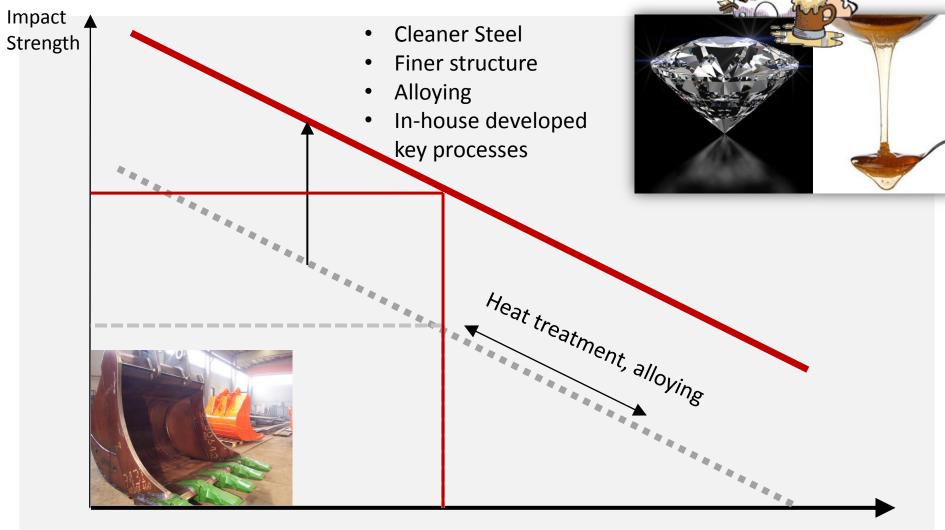
 $Q = F_N \, \mu \, v$

Decreasing weight for more efficiency

Example: recycling container, -1400 kg


Hardox 450 in cargoholds bluewater wessels

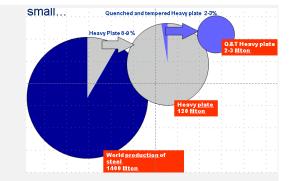
The liners


- 235 Mpa
 - 1300MPa (Hx450)
- Thickness 15mm
 - 10mm
- Servicelife 8 years
 - New servicelife 36 years
- Linerplate weight 74 ton
 - New 51 ton
 - 23 ton lighter (payload)

Why is Hardox different from others - or is it?

Hard and Tough – A difficult combinetion!

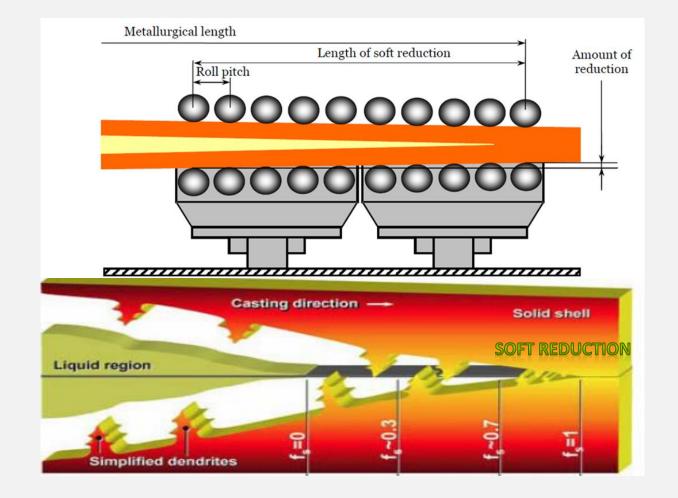
Strength/Hardness


SS_AB

Why is SSAB ahead?

Niche focus

- Equipment and Control System
- Operators
- Process engineers



SSAB

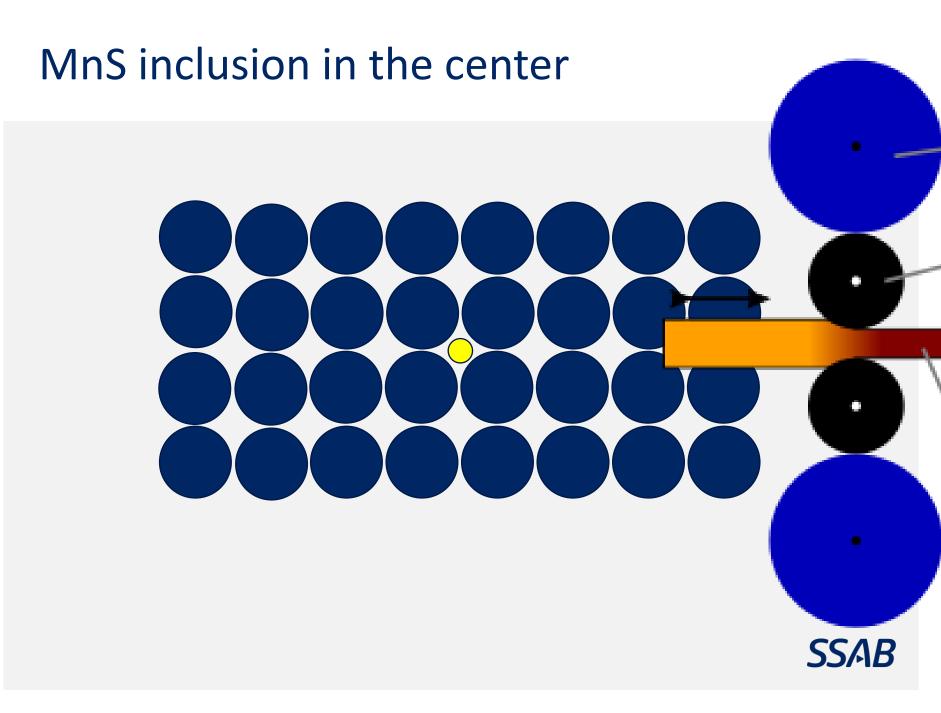
Key Process nr 1- Casting

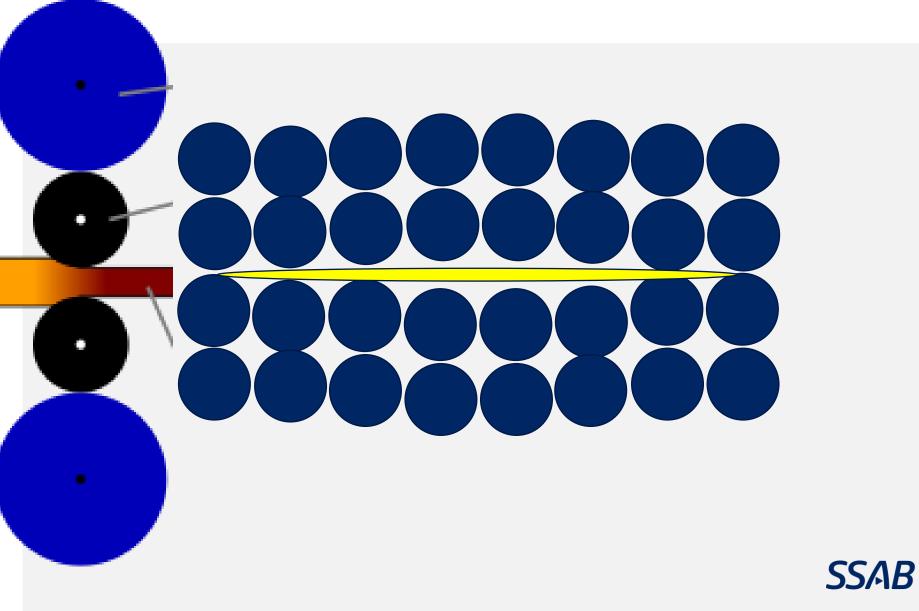
Unique soft reduction

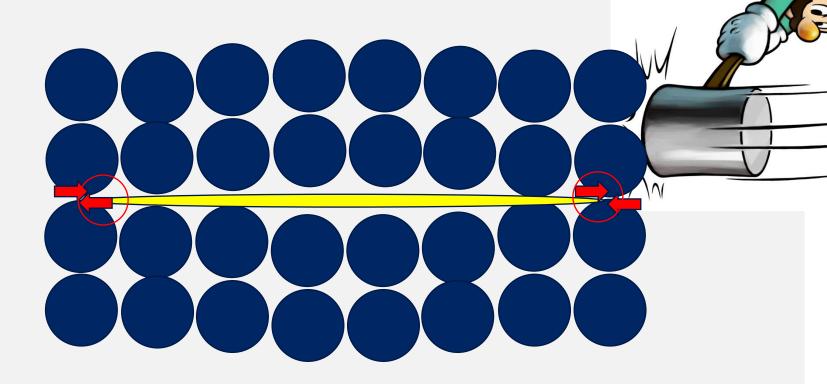
Key Process nr 2 - Rolling

4 - HIGH MILL

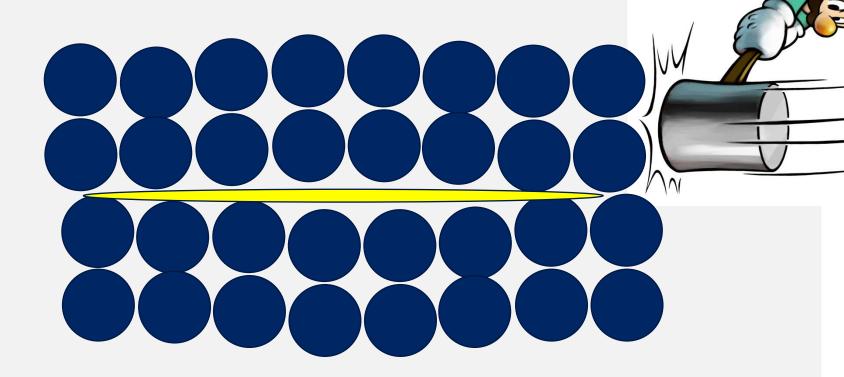
Properties – what and where is it measured?

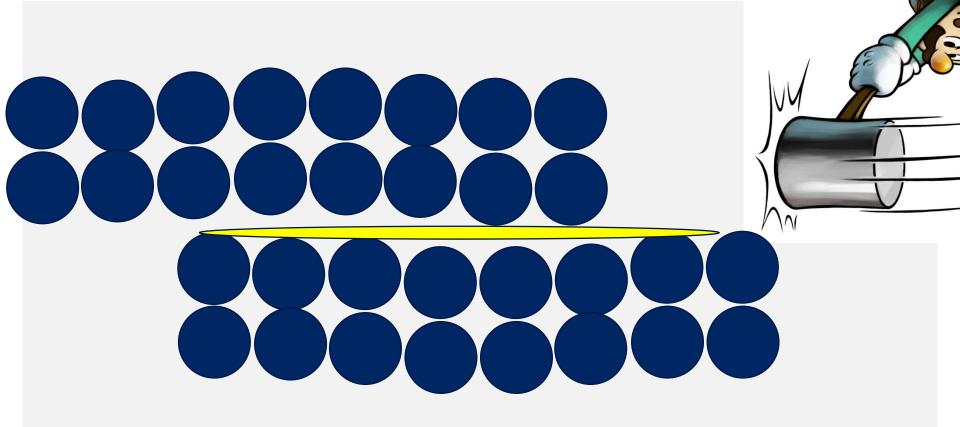

- Mechanical properties is measured..
 - Hardness, toughness and so on

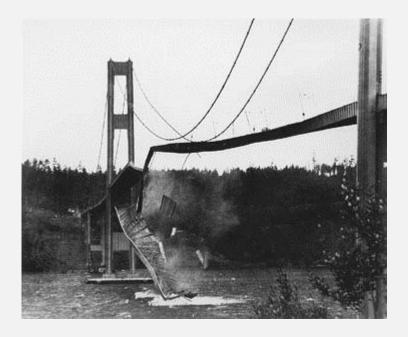




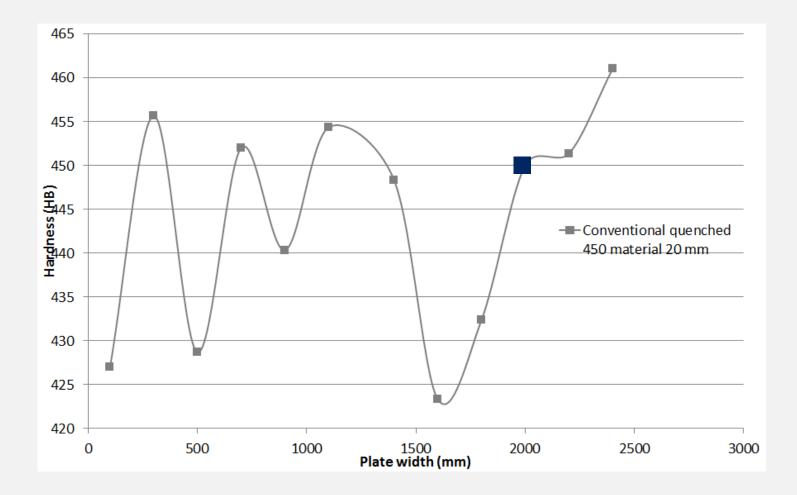
What about cleanliness and consistent properties? Are those measured, does they matter. Are they measurable?



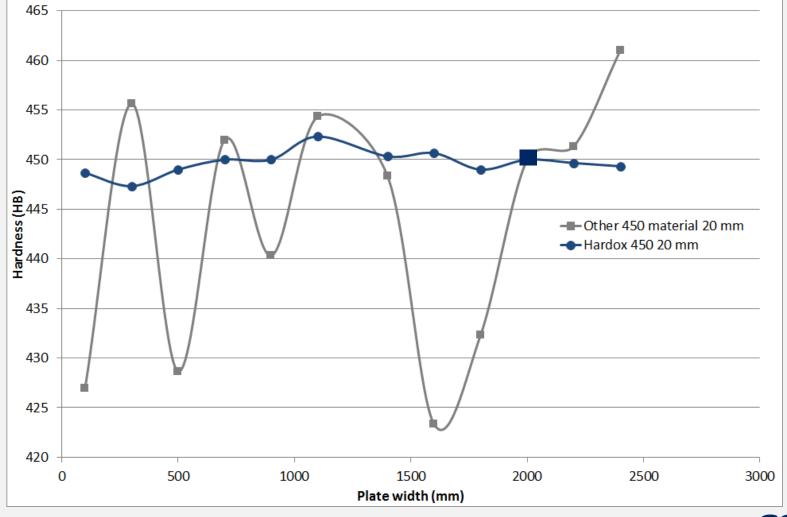




Woops...

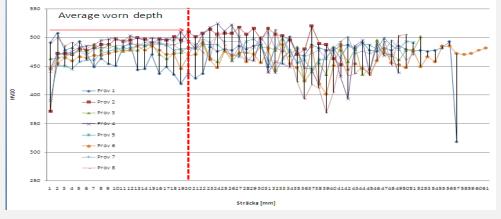


This is why SSAB guarantees the impact strength in the worst direction

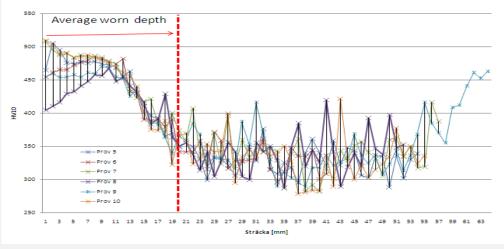

Key process nr 3: Quenching and tempering

Consistent properties within and between plates

SS/AB


Consistent properites within and between plates

SSAB


Who is the steel designed for?

Hardness distribution of liners with severe arching, HV 10 Sammanställning av hårdhet i prov som slagit sig

HARDOX 500 75 mm 60-100 % longer up-time (slide , copper mines)

Hardness distribution of liners with limited arching, HV 10 Sammanställning av hårdhet i prov som <u>ei</u> slagit sig

Competitor material AR 500 75 mm

Competition – data sheet says it all?

Data Sheet 152en Hardox 500 2013-06-17

Hardox 500

General Product Description

Hardox 500 is an abrasion resistant steel with a nominal hardness of 500 HBW. Typical applications are components and structures subject to wear. For more information on applications see www.sab.com

Available dimensions

Hardax 500 is available in thicknesses of 4.0 – 80 mm. Hardax 500 Tui is available in thicknesses of 4.– 65 mm. Both grades are available in widths up to 3350 mm and lengths up to 14630 mm. More detailed information on dimensions is provided in the dimension program at www.sab.com.

Mechanical Properties

Thickness mm	ness Hardness HBW Typical yield strer min – max ¹⁾ MPa, not guarant	
4 - 32	470 - 530	1250
(32) - 80	450 - 540	1250

¹Brinell hardness, HBW, according to EN ISO 6506–1. on a milled surface 0.5–3 mm below surface. At least one test specimen per heat and 40 tons. The nominal material thickness will not deviate more than ±15 mm from that of the test specimen.

The plates are through-hardened to a minimum of 90 % of the guaranteed minimum surface hardness.

Impact properties		Hardox SOO Tuf Transverse test, guaranteed Longitudinal test, typical		
Impact energy (J) for transverse tests Charpy V 10x10 $$\rm mm\ test\ specimen\ ^{21}$$	-	27 J/0 °C	37 J/-40 °C	

²¹ For thicknesses between 6 - 11.9 mm, subsize Charpy V-specimens are used. The specified minimum value is then proportional to the cross-sectional area of the test specimer, compared to 6 full-size speciment (0.0 x10 mm), impact testing according to ISO EN 148 per heat and thickness group. Average of three sets: Single value eminimum 778 of specified verages lampact tests performed from 6 mm.

Ultrasonic testing

Plates in thickness of 80 mm are delivered in Class E.S. in accordance with EN 10 160, other thicknesses are delivered in Class E.S.

Chemical Composition (heat analysis)

C ⁿ Max %		Mn " Max %	P Max %	S Max %	Cr ") Max %	Ni ⁿ Max%	Mo 7 Max %	B 7 Max %
0.30	0.70	1.60	0.020	0.010	1.50	1.5	0.60	0.005
The steel is grain refined. *) Intentional alloying elements.								

Maximum carbon equivalent CET (CEV)

 Thickness mm
 - (5)
 5 - (10)
 10 - (20)
 20 - (40)
 40 - 80

 CET (CEV)
 0.34 (0.49)
 0.36 (0.52)
 0.43 (0.64)
 0.45 (0.66)
 0.47 (0.75)

 $CET - C + \underline{Mn + Mo}_{10} + \underline{Cr + Cu}_{20} + \underline{Ni}_{40} = CEV - C + \underline{Mn}_{5} + \underline{Cr + Mo + V}_{5} + \underline{Cu + Ni}_{15}$

www.hardox.com

HARDOX®

Data Sheet 170en Hardox HiTuf 2013–04–25

Hardox HiTuf

General Product Description

Hardox HiTuf is an abrasion resistant steel with a nominal hardness of 350 HBW. Typical applications are components structures with need for high toughness and abrasions resistance. For more information on applications see www.sab.com

Available dimensions

Hardox HiTuf is available in thicknesses of 40 – 160 mm. Hardox HiTuf is available in widths up to 3350 mm and lengths up to 14530 mm. For thicknesses over 100 mm preferred width is 1550 mm with untrimmed edges. More detailed information on dimensions is provided in the dimension program at tww.sabb.com.

Mechanical Properties

		Typical yield strength MPa, not guaranteed	
40 - 160	310 - 370	850	

¹⁰ Brinel hardness, HBW, according to EN ISO 6506-1, on a milled surface 0.5 – 3 mm below surface. At least one test specimen per heat and 40 tons. The nominal material thickness will not deviate more than ±15 mm from that of the test specimen.

The plates are through-hardened to a minimum of 90 % of the guaranteed minimum surface hardness

Impact properties	Hardox HiTuf
Minimum impact energy (J) for transverse tests Charpy V 10x10 mm test specimen ²⁾	40/-40 °C

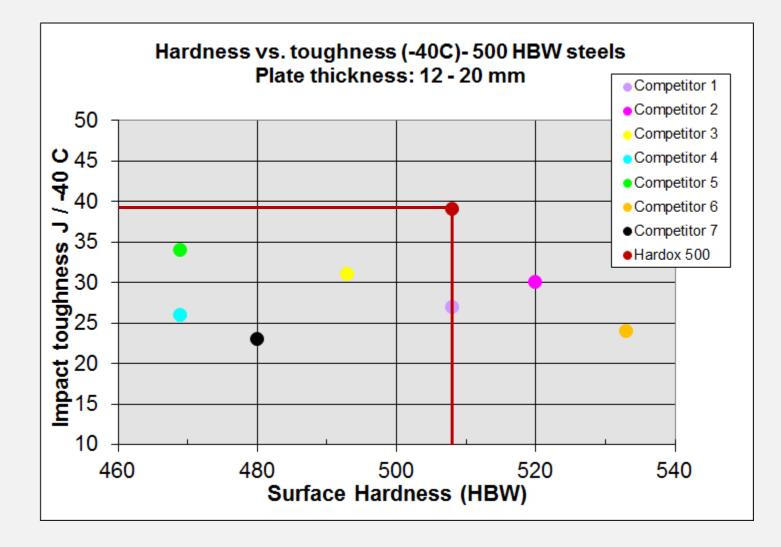
2) Impact testing according to ISO EN 148 per heat and thickness group. Average of three tests. Single value minimum 70% of specified average

Ultrasonic testing

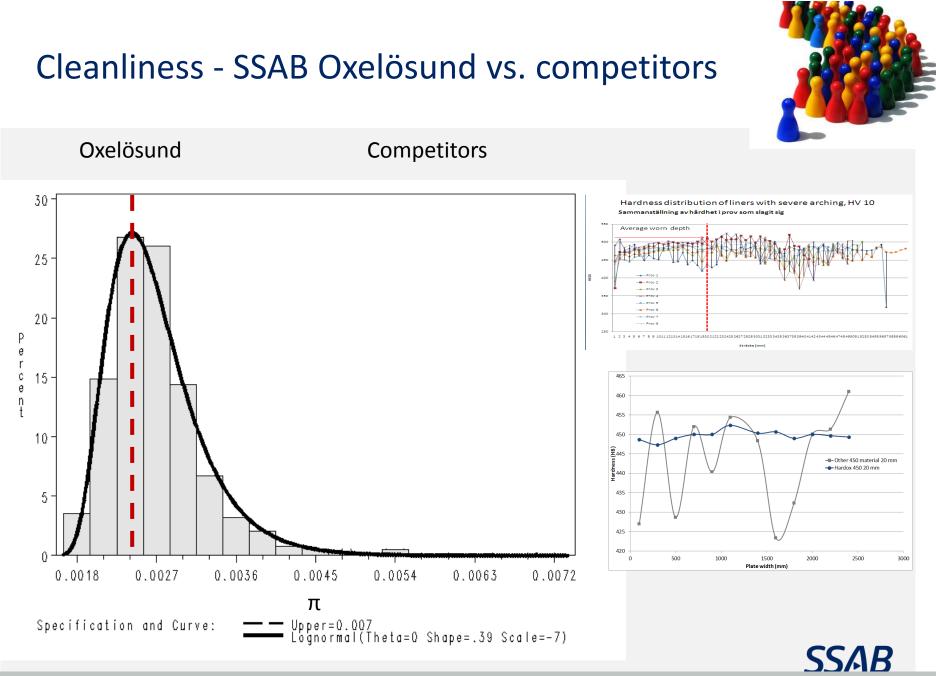
Plates in thicknesses of 80 - 160 mm are delivered in Class E₂S₂ in accordance with EN 10160, other thicknesses are dilivered in Class E.S.,

Chemical Composition (heat analysis)

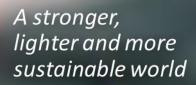
Maximum carbon equivalent CET (CEV)				
Thickness mm	40-70	(70) - 160		
CET (CEV)	0.38 (0.57)	0.41 (0.66)		


 $CET - C + \frac{Mn + Mo}{10} + \frac{Cr + Cu}{20} + \frac{Ni}{40}$ $CEV - C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Cu + Ni}{15}$

www.hardox.com



Data sheet, guarantees and reality...



SSAB

SS/AB

SSAB

